

650V Silicon Carbide Schottky Diode

DESCRIPTION:

- Zero reverse recovery current
- · Zero forward recovery voltage
- · Temperature independent switching behavior
- · High frequency operation
- · High temperature operation
- RoHS Compliant

TYPICAL APPLICATIONS:

- · Solar application, UPS, EV/HEV
- PFC
- Switch mode power supplies (SMPS)
- · Motor drives, Wind turbine, Rail traction

VRRM	650V
If (Tc = 146°C)	8A
Qc	28nC

ITO-220AC

MAXIMUM RATINGS (at T_J = 25 °C, unless otherwise specified)

Characteristic	Condition	Symbol Value		Unit
Repetitive Peak Reverse Voltage		V_{RRM}	650	V
Surge Peak Reverse Voltage		V _{RSM}	650	V
Continuous Forward Current	Tc=25°C Tc=135°C Tc=146°C	I _F	22.2 9.9 8.0	А
Repetitive Peak Forward Surge Current	Tc=25°C , t _P =10ms, Half sine pulse	I _{FRM}	40	А
Non-Repetitive Forward Surge Current	Tc=25°C , t _P =10ms, Half sine pulse	I _{FSM}	80	А
i ² t value	Tc=25°C, t _P =10ms, Half sine pulse	∫ i²dt	32	A ² S
Power dissipation	Tc=25℃ Tc=110℃	P tot	63 27	W
Operation Junction temperature		Tj	-55~+175	$^{\circ}\!$
Storage temperature		T _{STG}	-55~+175	$^{\circ}\! \mathbb{C}$
Mounting torque	M3 screw	М	1	Nm

THERMAL CHARACTERISTICS

Characteristic	Condition	Symbol	Typical	Unit	
Thermal resistance, junction - case		$R_{\text{th(j-C)}}$	2.37	°C/W	

ELECTRICAL CHARATERISTICS (at $T_J = 25$ °C, unless otherwise specified)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
DC Blocking Voltage	V _{DC}	650			V
Forward Voltage IF = 8A, Tc =25°C IF = 8A, Tc =175°C	V _F		1.30 1.56	1.5 1.8	V
Reverse Current VR = 650V, Tc =25 $^{\circ}$ C VR = 650V, Tc =175 $^{\circ}$ C	I _R		0.2 2.0	50 100	uA
Total Capacitive Charge VR = 400V	Q _C		28		nC
Total capacitance VR = 0V, f =1MHz VR = 200V, f =1MHz VR = 400V, f =1MHz	С		536 55 53		pF
Capacitance Stored Energy VR = 400 V	Ec		6.8		uJ

Typical Characteristics Curves

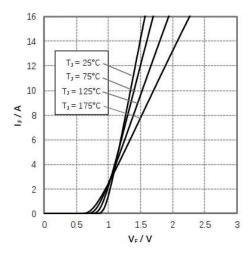


Figure 1. Forward characteristics

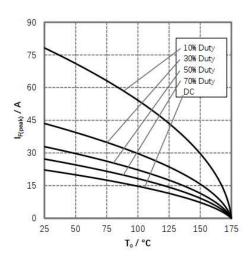


Figure 3. Current Derating

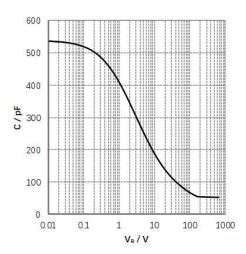


Figure 5. Capacitance vs. Reverse Voltage

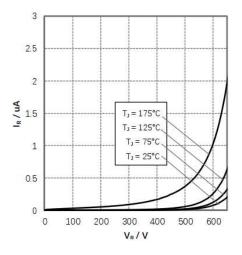


Figure 2. Reverse characteristics

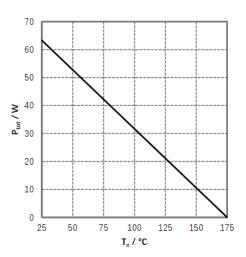


Figure 4. Power Dissipation

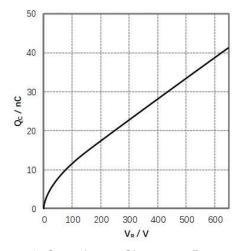


Figure 6. Capacitance Charge vs. Reverse Voltage

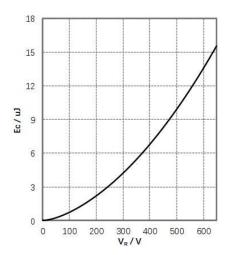


Figure 7. Capacitance Stored Energy

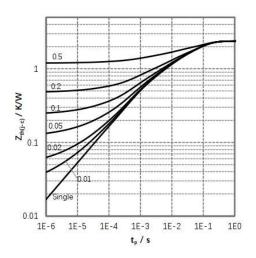
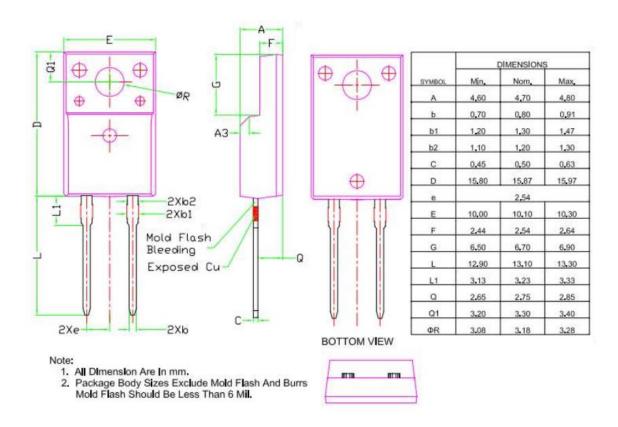



Figure 8. Transient Thermal Impedance

· Circuit diagram

• TO-220AC Package outlines : Dimensions in (mm)

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics, traffic control, combustion control, safety devices etc.)