PNP SILICON POWER TRANSISTORS ...designed for use in general power amplifier application # **FEATURES:** - * Low Collector-Emitter Saturation Voltage V_{CE(sat)}= 1.0V(Max) @I_C=3.0A,I_B=0.3A * DC Current Gain - hFE= 40-240@l_c= 0.5A - * Complementary to NPN 2SD526 # PNP 2SB596 4.0 AMPERE **POWER** TRANASISTORS 80 VOLTS 30 WATTS #### **MAXIMUM RATINGS** | Characteristic | Symbol | 2SB596 | Unit | |---|----------------------------------|-------------|------| | Collector-Emitter Voltage | V _{CEO} | 80 | V | | Collector-Base Voltage | V _{CBO} | 80 | V | | Emitter-Base Voltage | V _{EBO} | 5.0 | V | | Collector Current - Continuous
- Peak | I _C | 4.0
8.0 | Α | | Base current | I _B | 2.0 | Α | | Total Power Dissipation @T _C = 25°C
Derate above 25°C | P _D | 30
0.24 | W/°C | | Operating and Storage Junction
Temperature Range | T _J ,T _{STG} | -55 to +150 | °C | # THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |-------------------------------------|--------|------|------| | Thermal Resistance Junction to Case | Rθjc | 4.16 | °C/W | PIN 1.BASE 2.COLLECTOR 3.EMITTER 4.COLLECTOR(CASE) | DIM | MILLIMETERS | | | | | |------|-------------|-------|--|--|--| | DIVI | MIN | MAX | | | | | Α | 14.68 | 16.00 | | | | | В | 9.78 | 10.42 | | | | | С | 5.02 | 6.60 | | | | | D | 13.00 | 14.62 | | | | | E | 3.10 | 4.19 | | | | | F | 2.41 | 2.67 | | | | | G | 1.10 | 1.67 | | | | | Н | 0.69 | 1.01 | | | | | I | 3.21 | 4.98 | | | | | J | 1.14 | 1.40 | | | | | K | 2.20 | 3.30 | | | | | L | 0.28 | 0.61 | | | | | М | 2.48 | 3.00 | | | | | 0 | 3.50 | 4.00 | | | | 1.7 1.5 # ELECTRICAL CHARACTERISTICS (T_c = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |---|----------------------|----------|-----|------| | OFF CHARACTERISTICS | | | | | | Collector-Emitter Breakdown Voltage
(I _C = 50 mA, I _B = 0) | V _{(BR)CEO} | 80 | | ٧ | | Emitter-Base Breakdown Voltage
(I _C = 10 mA, I _C = 0) | V _{(BR)EBO} | 5.0 | | V | | Collector Cutoff Current
(V _{CB} = 80 V, I _E = 0) | Ісво | | 30 | uA | | Emitter Cutoff Current
(V _{EB} =5.0 V, I _C = 0) | I _{EBO} | | 100 | uA | | ON CHARACTERISTICS (1) | | | | | | DC Current Gain
(I _C = 0.5 A, V _{CE} = 5.0 V) *
(I _C = 3.0 A, V _{CE} = 5.0 V) | hFE(2)
hFE | 40
15 | 240 | | | Collector-Emitter Saturation Voltage | V _{CE(sat)} | | 1 7 | ٧ | # **DYNAMIC CHARACTERISTICS** | Current-Gain-Bandwidth Product | f _T | 3.0 | MHz | |--|----------------|-----|-----| | (I _C = 0.5 A, V _{CE} = 5.0 V, f = 1.0 MHz) | | 3.0 | | $\mathsf{V}_{\mathsf{BE}(\mathsf{on})}$ (1) Pulse Test: Pulse Width =300 us, Duty Cycle ≦ 2.0% * hFE(2) Classification : (I_C= 3.0 A, I_B= 300 mA) Base-Emitter On Voltage (I_C= 3.0 A, V_{CE}=5.0 V) | 40- | R | 80 | 70 | 0 | 140 | 120 | Υ | 240 | | |-----|---|----|----|---|-----|-----|---|-----|--| DC CURRENT GAIN # ACTIVE-REGION SAFE OPERATING AREA (SOA) There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate $I_{\text{C}}\text{-V}_{\text{CE}}$ limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate. The data of SOA curve is base on $T_{J(PK)}$ =150 °C; T_C is variable depending on conditions. second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(PK)}$ ≤150°C,At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown. # **Notice** MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document. MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred. Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others. These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics, traffic control, combustion control, safety devices etc.)