MOSPEC

MIP045N170D

1700V SiC N-Channel MOSFET

DESCRIPTION :

- · High Blocking Voltage with Low On-Resistance
- RDS(ON),typ.=45mΩ@VGS=18V Tj=25°C
- Low Capacitances
- Avalanche Ruggednes
- RoHS compliant.

TYPICAL APPLICATIONS:

- Solar inverters
- Batterry Chargers
- Switch mode power supplies
- High Voltage DC-DC Converters

BV _{DSS}	1700V
ا _D	45A
R _{DS(ON) typ} .	45m Ω

TO-247

MAXIMUM RATINGS (at T_C = 25 °C, unless otherwise specified)

Characteristic	Condition	Symbol	Value	Unit
Drain-Source Voltage		V _{DSS}	1700	V
Gate-Source Operation Voltage		V_{GSS}	-5/+18	V
Continuous Drain Current	Tc=25℃ Tc=100℃	Ι _D	45 35	А
Pulsed Drain Current	Tc=25 $^{\circ}$ C, tp limited by Tjmax	I _{D PULSE}	120	А
Total power dissipation		P _D	284	W
Operation Junction temperature		Tj	-55~+175	°C
Storage temperature		T _{STG}	-55~+175	°C

THERMAL CHARACTERISTICS

Characteristic	Condition	Symbol	Typical	Unit
Thermal resistance, junction - case		$R_{th(j-C)}$	0.53	°C/W
Thermal resistance, junction - Ambient		$R_{th(j-A)}$	40	°C/W

ELECTRICAL	CHARATERISTICS	(at T) = 25	°C unless	otherwise s	necified)
LLLOIIIOAL		(a I J - 2 J)	0, unic33	0110110130 3	peemea)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage VGS = 0V, ID = 100µA	BV _{DSS}	1700			V
Zero Gate Voltage Drain Current VDS = 1700 V, VGS = 0 V	I _{DSS}		10	100	uA
Forward Gate-Source Leakage Current VGS = 22V, VDS = 0V	I _{GSSF}			100	nA
Reverse Gate-Source Leakage Current VGS = -8V, VDS = 0V	I _{GSSR}	-100			nA
Gate-Source Threshold Voltage VDS = VGS, ID = 10mA	$V_{GS(th)}$	2.2	3.2	4.2	V
Drain-Source On-State Resistance VGS = 18V, ID = 40A Tj=25℃ VGS = 18V, ID = 40A Tj=175℃	$R_{DS(on)}$		45 107	60 143	mΩ
Transconductance ID = 35A, VDS = 10V	G _{fs}		16.8		S
Gate Resistance f=1MHz, VAC=25 mV, VGS = 0 V	R _G		1.3		Ω
Input capacitance f=1MHz, VAC=25 mV, VDS=1000 V, VGS=0 V	C _{iss}		3200		pF
Output capacitance f =1MHz, VAC=25 mV, VDS=1000 V, VGS=0 V	C _{oss}		90		pF
Reverse transfer capacitance f=1MHz, VAC=25 mV, VDS=1000 V, VGS=0 V	C _{rss}		7		pF
Total Gate Charge VDD= 1200V, ID= 35A,VGS= -5/15V, turn-on pulse	Q _G		106		nC
Gate to Source Charge VDD= 1200V, ID= 35A,VGS= -5/15V, turn-on pulse	Q _{GS}		33		nC
Gate to Drain Charge VDD= 1200V, ID= 35A,VGS= -5/15V, turn-on pulse	Q _{GD}		37		nC
Turn-on delay time VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω (inductive load)	td _(ON)		23		ns
Rise time VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω (inductive load)	tr		17		ns

MIP045N170D

Turn-off delay time VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω (inductive load)	td _(OFF)	15	ns
Fall time VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω (inductive load)	tf	11	ns
Turn-on Switching Energy VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω, L=60uH	E _(ON)	481	uJ
Turn-off Switching Energy VDD=1200 V, ID=35A, VGS= -5/15V, RG=1Ω, L=60uH	E _(OFF)	237	uJ

Body Diode

ELECTRICAL CHARATERISTICS (at TJ = 25 °C, unless otherwise specified)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Diode Forward Voltage VGS = -5V, ISD = 20A Tj=25℃ VGS = -5V, ISD = 20A Tj=175℃	V _{SD}		3.7 3.0	4.5 3.8	V
Revers Recovery Time VR=1200 V, ISD=35A, VGS= -5V, di/dt = 2200A/us	Trr		31		ns
Revers Recovery Charge VR=1200 V, ISD=35A, VGS= -5V, di/dt = 2200A/us	Qrr		305		nC
Peak Revers Recovery Current VR=1200 V, ISD=35A, VGS= -5V, di/dt = 2200A/us	I _{rrm}		8		A

MIP045N170D

Typical Characteristics

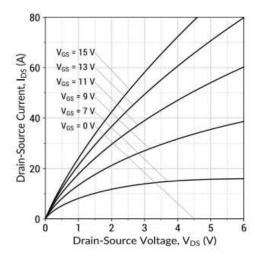


Figure 1. Typical output characteristics (Tj=25°C)

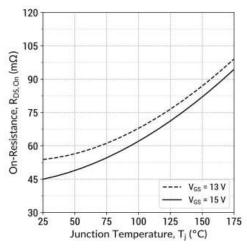


Figure 3. Typical On-State Resistance v/s Temperature

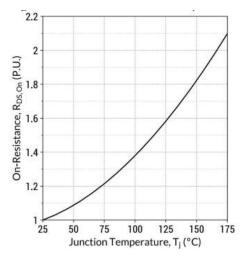


Figure 5. Typical Normalized On-State Resistancev/sTemperature

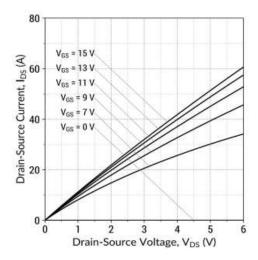


Figure 2. Typical output characteristics (Tj=175°C)

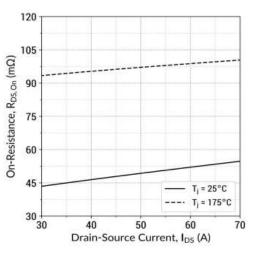


Figure 4. Typical On-State Resistance v/s Drain Curren

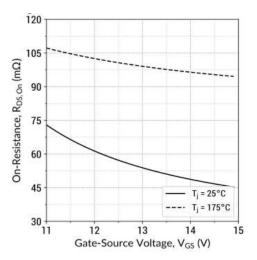


Figure 6. Typical On-State Resistance v/s Gate Voltage

MIP045N170D

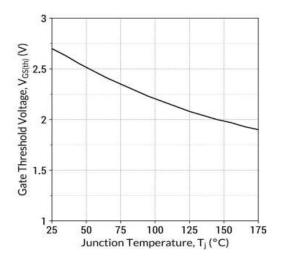


Figure 7. Typical Threshold Voltage Characteristics

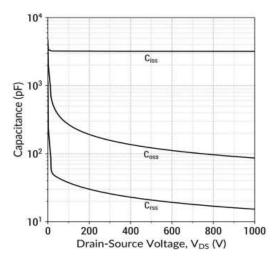


Figure 9. Typical Capacitance v/s Drain-Source Voltage

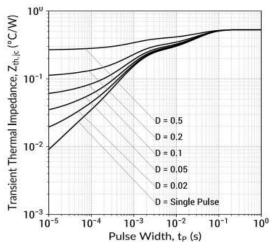


Figure 11. Typical Transient Thermal Impedance

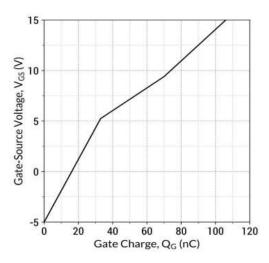
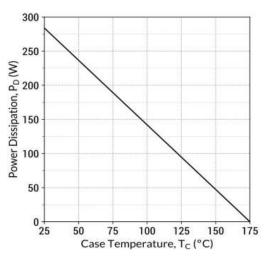
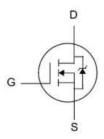
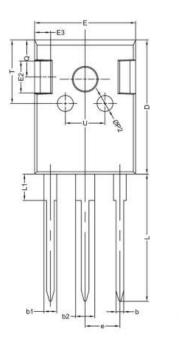
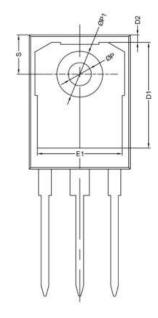


Figure 8. Typical Gate Charge Characteristics


Figure 10. Typical Power De-rating Curve


Circuit diagram

TO-247 Package outlines : Dimensions in (mm)

AI

DIM	MI	LLIMETE	RS
DIM	MIN	TYP.	MAX
Α	4.80	5.00	5.20
A1	2.21	2.41	2.61
A2	1.90	2.00	2.10
b	1.10	1.20	1.35
b1		2.00	
b2		3.00	
С	0.55	0.60	0.75
c D	20.80	21.00	21.20
D1		16.55	
D2		1.20	
Е	15.60	15.80	16.00
E1		13.30	
E2		5.00	
E3		2.50	
е		5.44	
e L L1	19.42	19.92	20.42
L1		4.13	
Р	3.50	3.60	3.70
P1			7.40
P2		2.50	
Q		5.80	
Q S T	6.05	6.15	6.25
Т		10.00	
U		6.20	

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics , traffic control, combustion control, safety devices etc.)