P-CHANNEL ENCHANCEMENT MODE MOSFET

ORDERING INFORMATION

PART NUMBER	PACKAGE	SHIPPING	MARKING CODE
LS2301P□-T3R	SOT-23	Tape Reel	W6yww
LS2301P□-T3LR	SOT-23-3L	Tape Reel	
LS2301P□-3T3R	SOT-323	Tape Reel	81

Notes:

1.
□: none is for Lead Free package;

"G" is for Halogen Free package.

2. Marking Code: yww: y: Year code; ww: Week code.

THERMAL DATA

PARAMETER	SYMBOL	VALUES	UNIT	
	SOT-23		100	°C/W
Thermal Resistance, Junction-to-Ambient	SOT-23-3L	R _{$heta$JA}	100	
	SOT-323		120	
	SOT-23		35	
Thermal Resistance, Junction-to-Case	SOT-23-3L	$R_{ heta}{}_{JC}$	35	°C/W
	SOT-323		-	

Notes:

3. $R_{\theta_{JA}}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta_{JC}}$ is guaranteed by design while $R_{\theta_{CA}}$ is determined by the user's board design. The value of $R_{\theta_{JA}}$ is measured with device mounted on 1 in² FR-4 board with 2 oz copper.

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}$ C, unless otherwise noted. (Note 4)

PARAMETER		SYMBOL	VALUES	UNIT
Drain-Source Voltage		V _{DSS}	-20	V
Gate-Source Voltage		V_{GSS}	±12	V
Continuous Drain Current (Note 5)		I _D	-2.5	А
Pulsed Drain Current (Note 6)		I _{DM}	-10	А
Power Dissipation ^(Note 7) (for SOT-23-3 & SOT-23-3L)	T _A = 25°C	PD	800	mW
	T _A = 100°C		300	mW
Power Dissipation (Note 7)	SOT-323, T _A = 25°C		600	mW
Continuous Source Current (Diode Conduction) (Note 5)		I _S	-1.5	А
Operating Junction Temperature		TJ	-55 ~ +150	°C
Storage Temperature Range		T_{stg}	-55 ~ +150	°C

Notes:

4. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

5. The current rating is based on the t \leq 10s thermal resistance rating.

6. Repetitive rating, pulse width limited by maximum junction temperature.

7. Surface mounted on 1 in² FR-4 board with 2 oz copper, t \leq 10sec.

ELECTRICAL CHARACTERISTICS

$T_A = 25^{\circ}C$, unless otherwise noted.	1						
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	ТҮР	МАХ	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D = -250μA		-20			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0V, V_{DS} = -16V$	/			-1.0	μA
			T _J = 85°C			-30	μA
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 12V$				±100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = -250 μ A		-0.45	-0.7	-1.0	V
Static Drain-Source On Resistance	R _{DS(ON)}	V_{GS} = -4.5V, I _D = -2.5A			85	130	m0
		V_{GS} = -2.5V, I_{D} = -2.0A			110	190	11122
Forward On Voltage (Note 8)	V _{SD}	V _{GS} = 0V, I _{SD} = -0.5A			-0.8	-1.3	V

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYNAMIC CHARACTERISTICS (No	ote 9)					
Input Capacitance	C _{iss}			360		pF
Output Capacitance	C _{oss}	V _{DS} = -15V, V _{GS} = 0V, f = 1 MHz		80		pF
Reverse Transfer Capacitance	C _{rss}			50		pF
Gate Resistance	R _G	V_{DS} = 0V, V_{GS} = 0V, f = 1 MHz		9.2		Ω
SWITCHING ON CHARACTERIST	ICS (Note 9)					
Turn-On Delay Time	t _{d(on)}	$V_{pp} = -10V I_p = -1A R_q = 60$		8	16	
Rise Time	tr	V_{GS} = -4.5V, R _L = 10Ω		7	15	ns
Total Gate Charge	Qg			5	7	
Gate-Source Charge	Q_{gs}	V _{DS} =-10V, I _D = -2.5A, V _{GS} = -4.5V		0.7		nC
Gate-Drain Charge	Q_{gd}			0.6		
SWITCHING OFF (Note 9)		·				
Turn-Off Delay Time	$t_{d(off)}$	$V_{DD} = -10V, I_{D} = -1A, R_{g} = 6\Omega,$		18	35	-
Fall Time	tſ	V_{GS} = -4.5V, R _L = 10Ω		8	15	ns

8. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2%.

9. Guaranteed by design, not subject to production testing.

TYPICAL PERFORMANCE CHARACTERISTICS

All figures are measured at $T_A = 25^{\circ}C$, unless otherwise noted.

LS2301P

PHYSICAL DIMENSION

LS2301P