

30V N-Channel Power MOSFET

DESCRIPTION:

- · Ultra-Low On-Resistance
- 100% UIS Tested, 100% Rg Tested
- RoHS compliant
- Halogen Free

V _{DS}	30V
I _{D_MAX}	215A
R _{DS(ON)_MAX} @V _{GS} =10V	1.25m Ω

PDFN5060-8L

TYPICAL APPLICATIONS:

- Motor Drive
- · Li- Battery Protection
- Power Management for High Performance Application

MAXIMUM RATINGS (at $T_C = 25$ °C, unless otherwise specified)

Characteristic	Condition	Symbol	Value	Unit
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	Tc=25°C Tc=100°C	I _D	215 136	Α
Pulse Drain Current (1)		I _{DM}	859	Α
Single Pulse Avalanche Energy (2)		E _{AS}	336	mJ
Single Pulse Avalanche Current	L=0.1mH	I _{AS}	45	Α
Maximum Power Dissipation	Tc=25°C Tc=100°C	P _D	89 36	W
Junction & Storage Temperature Range		T_J,T_STG	-55~+150	$^{\circ}$

THERMAL CHARACTERISTICS

Characteristic	Condition	Symbol	Value	Unit	
Thermal Resistance, Junction to Ambient		$R_{ hetaJA}$	40	°C/W	
Thermal Resistance, Junction to Case		$R_{ heta JC}$	1.4	°C/W	

Notes

- 1. This current is calculated on single pulse with 10us Single Pulse.
- 2. Defined by design, not subject to production test, EAS condition: TJ=25°C, VDD=15V, VGS=10V, L=1.0mH.

ELECTRICAL CHARATERISTICS (at $T_J = 25$ °C, unless otherwise specified)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage VGS = 0V, ID = 250uA	V _{(BR)DSS}	30			V
Zero Gate Voltage Drain Current VDS = 30 V, VGS = 0 V Tj=25°C VDS = 30 V, VGS = 0 V Tj=125°C	I _{DSS}			1 100	uA
Gate-Source Leakage Current VGS = ±20V, VDS = 0V	I _{GSS}			±100	nA
Gate-Source Threshold Voltage VDS = VGS, ID = 250uA	$V_{GS(th)}$	1.2	1.7	2.5	V
Drain-Source On-State Resistance VGS = 10V, ID = 20A VGS = 4.5V, ID = 20A	R _{DS(ON)}		0.99 1.60	1.25 2.20	mΩ
Forward Transconductance VDS = 5V, ID = 20A	$G_{fS)}$		40		S
Input capacitance f=1MHz, VDS=15 V, VGS=0 V	C _{iss}		2978		pF
Output capacitance f=1MHz, VDS=15 V, VGS=0 V	C _{oss}		2050		pF
Reverse transfer capacitance f=1MHz, VDS=15 V, VGS=0 V	C _{rss}		160		pF
Gate Resistance f=1MHz, VDS=0 V, VGS=0 V	R _g		1.9		Ω
Total Gate Charge VDS= 15V, ID= 20A,VGS= 10V	Q_{G}		48		nC
Gate to Source Charge VDS= 15V, ID= 20A,VGS= 10V	Q _{GS}		5.6		nC
Gate to Drain Charge VDS= 15V, ID= 20A,VGS= 10V	Q_{GD}		5.8		nC
Turn-on delay time VDS=15 V, ID=20A, VGS= 10V, R _{GEN} =3Ω	td (ON)		5.0		ns
Rise time VDS=15 V, ID=20A, VGS= 10V, R _{GEN} =3Ω	tr		13		ns
Turn-off delay time VDS=15 V, ID=20A, VGS= 10V, R _{GEN} =3Ω	td _(OFF)		46		ns
Fall time VDS=15 V, ID=20A, VGS= 10V, R _{GEN} =3Ω	tf		18		ns

Body Diode

ELECTRICAL CHARATERISTICS (at TJ = 25 °C, unless otherwise specified)

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Diode Forward Voltage VGS = 0V, I _S = 2.0A Tj=25°C	V _{SD}		0.7	1.2	V
Diode Forward Current Tj=25°C	Is			120	Α
Revers Recovery Time IF=20A, dl/dt = 100A/us∏Tj=25°C	Trr		57		ns
Revers Recovery Charge IF=20A, dl/dt = 100A/us⊡Tj=25°C	Qrr		53		nC

Typical Electrical and Thermal Characteristics

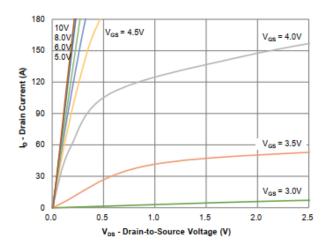


Figure 1. Typical output characteristics (Tj=25°C)

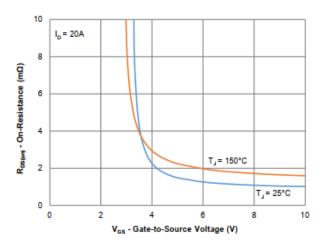


Figure 3. On-Resistance vs. Gate-Source Voltage

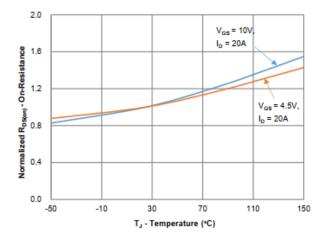


Figure 5. On-Resistance vs. Junction Temperature

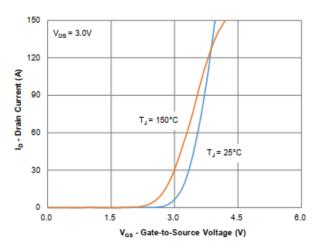


Figure 2. Typical Transfer Characteristics

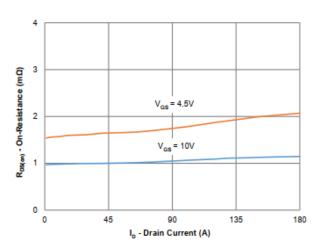


Figure 4. On-Resistance vs. Gate-Source Voltage

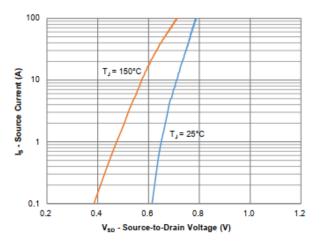


Figure 6. Source-Drain Diode Forward Voltage

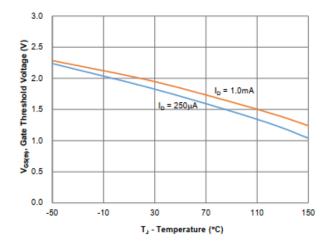


Figure 7. Gate Threshold Variation vs. Junction Temperature

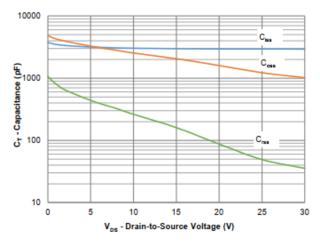


Figure 9. Capacitance Characteristics

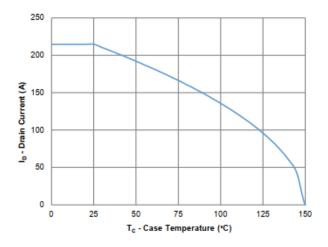


Figure 11. Current Derating

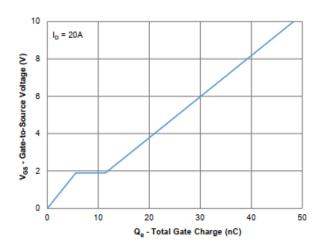


Figure 8. Gate Charge Characteristics

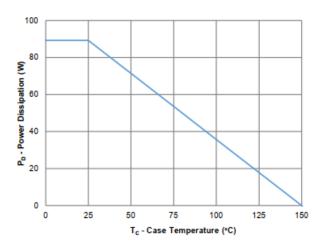


Figure 10. Power Derating

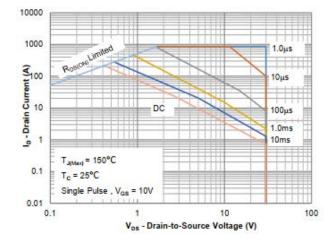


Figure 12. Safe Operating Area

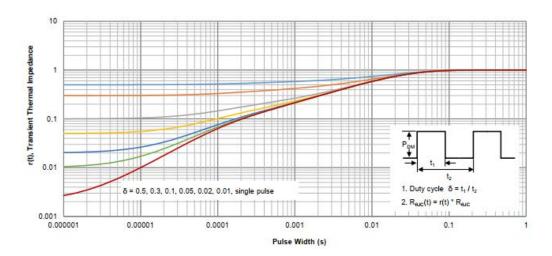
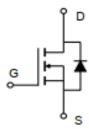
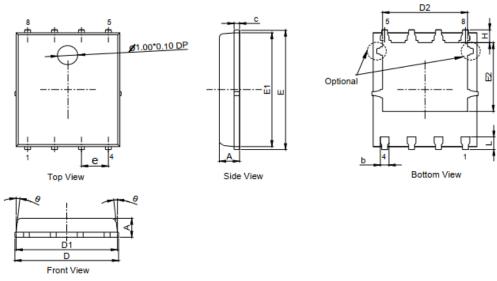




Figure 13. Max. Normalized Maximum Transient Thermal Impedance

· Circuit diagram

• PDFN5060-8L Package outlines : Dimensions in (mm)

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
 2. ALL DIMNESIONS IN MILLIMETER (ANNGLE IN DEGREE).
 3. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

DIM.	MILLIMETER			
	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
b	0.20	-	0.51	
С	0.21	0.25	0.34	
D	4.90	-	5.40	
D1	4.80		5.15	
D2	3.91	-	4.20	
E	5.90	-	6.50	
E1	5.65	5.80	5.95	
E2	3.32	3.50	3.63	
e	1.27BSC			
н	0.50	-	0.93	
L	0.45	-	0.91	
θ	0*	-	12*	

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics, traffic control, combustion control, safety devices etc.)