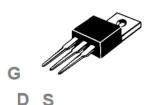
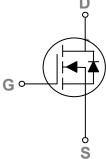


General Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

BVDSS	RDSON	ID
40V	2.5 m Ω	160A


Features


- 40V, 160A, RDS(ON) = $2.5m\Omega@VGS = 10V$
- Improved dv/dt capability
- Fast switching
- 100% EAS Guaranteed
- Green Device Available

Applications

- MB / VGA / Server Vcore
- POL Applications
- SMPS 2nd SR
- BMS System

Absolute Maximum Ratings Tc=25℃ unless otherwise noted

Symbol	Parameter	Rating	Units	
V_{DS}	Drain-Source Voltage	40	V	
V_{GS}	Gate-Source Voltage	±20	V	
	Drain Current – Continuous (T _C =25°C) (Chip Limitation)	160	Α	
I _D	Drain Current – Continuous (T _C =100°C) (Chip Limitation)	100	Α	
I _{DM}	Drain Current – Pulsed ¹	640	Α	
EAS	Single Pulse Avalanche Energy ²	360	mJ	
IAS	Single Pulse Avalanche Current ²	85	Α	
D	Power Dissipation (T _C =25°C)	184	W	
P_D	Power Dissipation – Derate above 25°C	1.47	W/°C	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction to ambient		62	°C/W
R _{0JC}	Thermal Resistance Junction to Case		0.68	°C/W

40V N-Channel MOSFETs

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Static State Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV_{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I_D =250uA	40			V	
I	I _{DSS} Drain-Source Leakage Current	V _{DS} =40V , V _{GS} =0V , T _J =25°C			1	uA	
IDSS		V _{DS} =32V , V _{GS} =0V , T _J =85°C			10	uA	
I_{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA	
Б	R _{DS(ON)} Static Drain-Source On-Resistance ³	V _{GS} =10V , I _D =30A	V _{GS} =10V , I _D =30A		2.1	2.5	mΩ
™ DS(ON)		V _{GS} =4.5V , I _D =15A		2.6	3.5	mΩ	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=250uA$	1	1.6	2.5	V	
gfs	Forward Transconductance	V _{DS} =10V , I _D =15A		45		S	

Dynamic Characteristics

Q_g	Total Gate Charge ^{3, 4}		 70	140	
Q_{gs}	Gate-Source Charge ^{3, 4}	V_{DS} =20V , V_{GS} =4.5V , I_{D} =10A	 15	32	nC
Q_gd	Gate-Drain Charge ^{3, 4}		 40	80	
$T_{d(on)}$	Turn-On Delay Time ^{3,4}		 24.6	48	
Tr	Rise Time ^{3, 4}	V_{DD} =20V , V_{GS} =10V , R_{G} =10 Ω	 62.8	120	no
$T_{d(off)}$	Turn-Off Delay Time ^{3,4}	I _D =10A	 224	440	ns
T _f	Fall Time ^{3, 4}		 162	320	
C _{iss}	Input Capacitance		 8000	12000	
C _{oss}	Output Capacitance	V_{DS} =25V , V_{GS} =0V , F=1MHz	 550	1000	pF
C _{rss}	Reverse Transfer Capacitance		 420	800	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, F=1MHz	 1.2	2.4	Ω

Guaranteed Avalanche Energy

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy	V _{DD} =25V, L=0.1mH, IAS=30A	45			mJ

Drain-Source Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V =V =0V Force Current			160	Α
I _{SM}	Pulsed Source Current ³	V _G =V _D =0V , Force Current			320	Α
V_{SD}	Diode Forward Voltage ³	V _{GS} =0V , I _S =1A , T _J =25°C			1	V
t _{rr}	Reverse Recovery Time	V _{GS} =0V,I _S =20A , di/dt=100A/µs		32		ns
Q _{rr}	Reverse Recovery Charge	T _J =25°C		19		nC

Note:

- Repetitive Rating : Pulsed width limited by maximum junction temperature.
- 2. V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =85A., R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C.
- 3. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%.
- 4. Essentially independent of operating temperature.

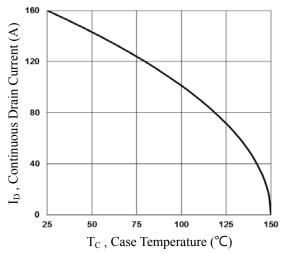


Fig.1 Continuous Drain Current vs. T_c

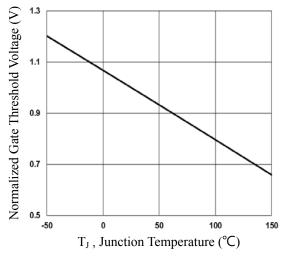


Fig.3 Normalized V_{th} vs. T_J

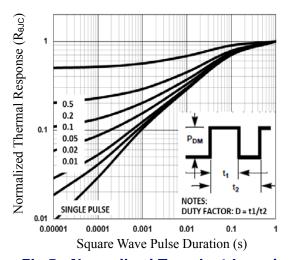


Fig.5 Normalized Transient Impedance

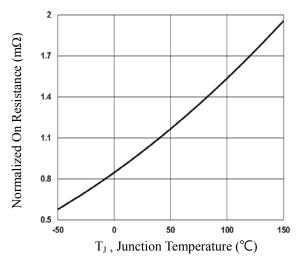


Fig.2 Normalized RDSON vs. T_J

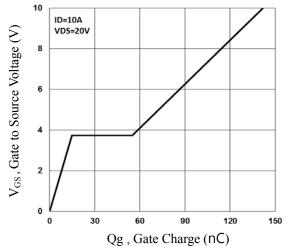


Fig.4 Gate Charge Waveform

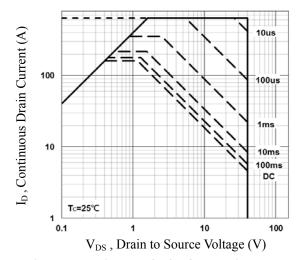


Fig.6 Maximum Safe Operation Area

V_{DS} V_{GS} $T_{d(on)}$ T_{r} T_{off} T_{off}

Fig.7 Switching Time Waveform

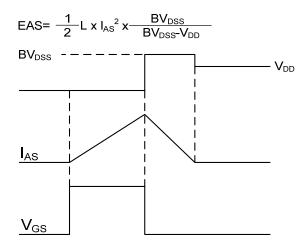
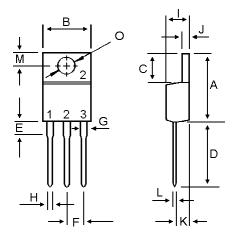



Fig.8 EAS Waveform

TO220 PACKAGE INFORMATION

	MILLIMETERS			
DIM	MIN	MAX		
Α	14.68	16.00		
В	9.78	10.42		
С	5.02	6.60		
D	13.00	14.62		
Е	3.10	4.19		
F	2.41	2.67		
G	1.10	1.67		
Н	0.69	1.01		
_	4.22	4.98		
J	1.14	1.40		
K	2.20	3.30		
L	0.28	0.61		
М	2.48	3.00		
0	3.50	4.00		

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics, traffic control, combustion control, safety devices etc.)