

1200V 40A Trench and Field Stop IGBT

DESCRIPTION :

- High ruggedness performance
- High speed switching
- · Low collector to emitter saturation voltage
- · Easy parallel switching capability
- · RoHS compliant.

TYPICAL APPLICATIONS :

- Welding machines
- UPS applications
- Solar inverters

IGBT

MAXIMUM RATINGS (Tvj=25°C unless otherwise specified)

Characteristic	Condition	Symbol	Value	Unit
Collector-Emitter Voltage		V _{CES}	1200	V
Continuous collector current	Tc=25℃ Tc=100℃	I _C	80 40	Α
Pulsed collector current	t_P limited by Tvjmax	I _{CM}	160	А
Gate emitter voltage		V _{GE}	±20	V
Power dissipation	Tc=25℃ Tc=100℃	P _{tot}	681 340	W
Operating junction temperature range		Tvj	-40~+175	°C
Storage temperature		T _{STG}	-55~+150	°C

THERMAL CHARACTERISTICS

Characteristic	Condition	Symbol	Max.	Unit
IGBT thermal resistance, junction - case		R _{th(j-C)}	0.22	K/W
Diode thermal resistance, junction - case		$R_{th(j-C)}$	0.48	K/W
Thermal resistance, junction - ambient		$R_{\text{th}(j-A)}$	40	K/W

TO-247

ELECTRICAL CHARATERISTICS

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Collector-emitter cut-off current VCE=1200V, VGE=0V Tvj=25 $^\circ$ C	I _{CES}			100	uA
Gate-emitter leakage current VCE=0V, VGE=±20V Tvj=25°C	I _{GES}			±100	nA
Gate-Emitter threshold voltage IC=1.0mA, VGE= VCE Tvj=25℃	$V_{GE(th)}$	5.0	6.0	7.0	V
Collector-Emitter saturation voltage VGE=15V, IC=40A Tvj=25℃ VGE=15V, IC=40A Tvj=175℃	$V_{CE(SAT)}$		1.9 2.2		V
Input capacitance f=1MHz, VCE=30 V, VGE=0 V Tvj=25℃	C _{ies}		9900		pF
Output capacitance f=1MHz, VCE=30 V, VGE=0 V Tvj=25℃	C _{oes}		189		pF
Reverse transfer capacitance f=1MHz, VCE=30 V, VGE=0 V Tvj=25 $^\circ$ C	C _{res}		40		pF
Gate charge IC = 40A, VGE = 15 V,VCC =960V Tvj=25 $^\circ$ C	Q _G		263		nC
Turn-on delay time IC=40A, VCC=600 V Tvj=25℃ VGE=0/15 V, RG=10Ω Tvj=175℃ (inductive load)	td _(ON)		85 76		ns
Rise time IC=40A, VCC=600 V Tvj=25℃ VGE=0/15 V, RG=10 Ω Tvj=175℃ (inductive load)	tr		76 75		ns
Turn-off delay time IC=40A, VCC=600 V Tvj=25℃ VGE=0/15 V, RG=10Ω Tvj=175℃ (inductive load)	td _(OFF)		307 360		ns
Fall time IC=40A, VCC=600 V Tvj=25℃ VGE=0/15 V, RG=10Ω Tvj=175℃ (inductive load)	tf		69 149		ns
Turn-on energy IC=40A, VCC=600 V Tvj=25℃ VGE=0/15 V, RG=10 Ω Tvj=175℃ (inductive load)	E _(ON)		2.5 2.9		mJ

Turn-off energy loss per pulse IC=40A, VCC=600 V Tvj=25°C VGE=0/15 V, RG=10 Ω Tvj=175°C (inductive load)	E _(OFF)		1.4 2.6		mJ	
---	--------------------	--	------------	--	----	--

Diode

MAXIMUM RATINGS (Tvj=25°C unless otherwise specified)

Characteristic	Condition	Symbol	Value	Unit
Repetitive peak reverse voltage	Tvj=25℃	V _{RRM}	1200	V
Continuous forward current	Tc=100℃	I _F	40	А
Diode maximum current	t_P limited by Tvj max	I _{FM}	160	А

ELECTRICAL CHARATERISTICS

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Forward voltage IF=40A, Tvj=25℃ IF=40A, Tvj=175℃	V _F		2.0 1.6		v
Reverse Recovered Time IF=40 A, Tvj=25℃ -diF/dt =750A/µs Tvj=175℃ VR=600 V	T _{rr}		175 285		ns
Peak reverse recovery current IF=40 A, Tvj=25℃ -diF/dt =750A/µs Tvj=175℃ VR=600 V	I _{RRM}		24 37		A
Reverse Recovered charge IF=40 A, Tvj=25℃ -diF/dt =750A/µs Tvj=175℃ VR=600 V	Q _{rr}		2000 5500		nC

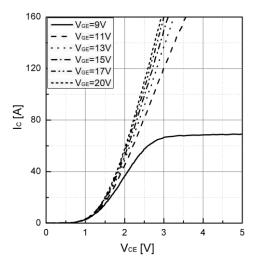


Figure 1. Typical output characteristics (Tvj=25 $^{\circ}$ C)

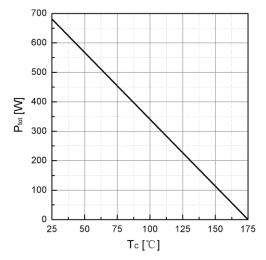


Figure 3. Power dissipation as a function of TC

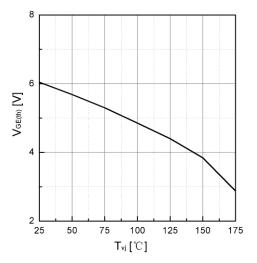


Figure 5. Typical VGE(th) as a function of Tvj ($I_C=1mA$)

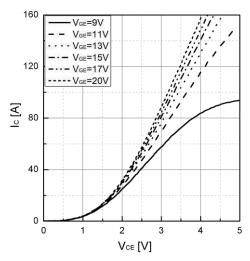


Figure 2. Typical output characteristics (Tvj=175°C)

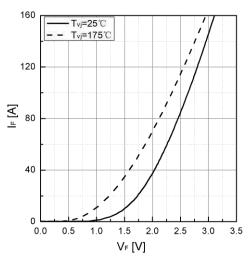


Figure 4. Typical IF as a function of VF

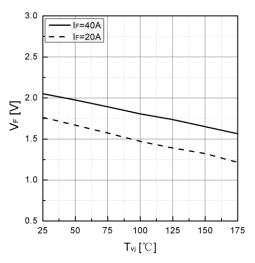


Figure 6. Typical VF as a function of Tvj

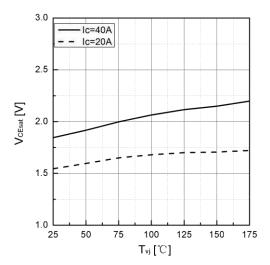


Figure 7. Typical VCEsat as a function of Tvj

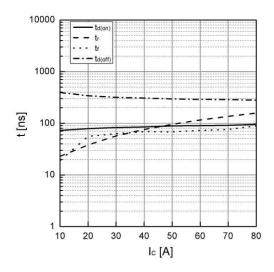


Figure 9. Typical switching times as a function of IC

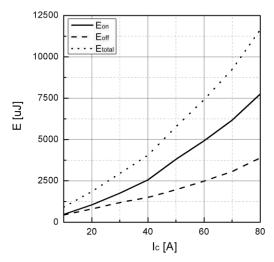


Figure 11. Typical switching energy losses as a function of IC

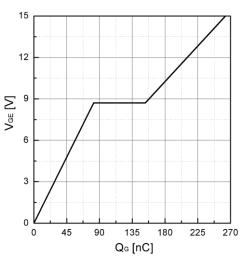


Figure 8. Typical Gate charge

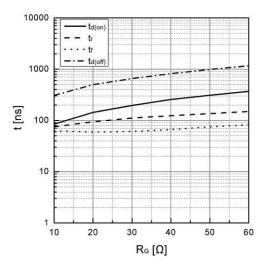


Figure 10. Typical switching times as a function of RG

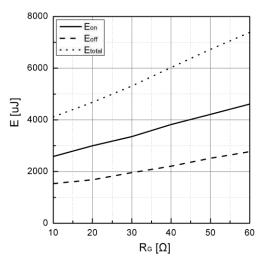


Figure 12. Typical switching energy losses as a function of RG

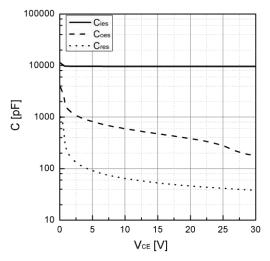


Figure 13. Typical capacitance as a function of VCE (f=1Mhz, VGE=0V)

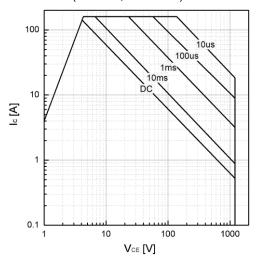


Figure 15. Safe operating area

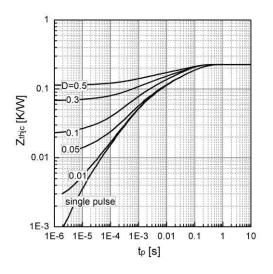
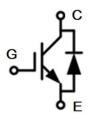
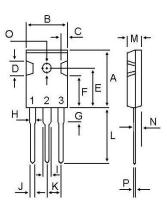




Figure 14. Transient thermal impedance, IGBT

Circuit diagram

Package outlines : Dimensions in (mm)

DIM	MILLIMETERS			
DIM	MIN	MAX		
A	20.80	21.80		
В	15.38	16.20		
С	1.90	2.70		
D	5.10	6.10		
E	14.50	15.50		
F	11.20	13.20		
G	3.75	4.35		
Н	1.90	2.30		
I	2.90	3.30		
J	1.00	1.40		
K	5.26	5.66		
L	19.50	20.50		
M	4.68	5.36		
N	2.30	2.60		
0	3.45	3.85		
P	0.48	0.72		

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics , traffic control, combustion control, safety devices etc.)