MOSPEC

M300R12E6HF

62mm Half Bridge IGBT Module

DESCRIPTION :

- 1200V Trench / Field Stop Technology
- Low Switching Power Loss
- Positive Temperature Coefficient

TYPICAL APPLICATIONS:

- Welder Inverter
- Induction Heating
- High Switching Frequency Application
- Inverter

 $V_{CES} = 1200V$, $I_{C nom} = 300A / I_{CRM} = 600A$

IGBT, Inverter

MAXIMUM RATINGS

Characteristic	Condition	Symbol	Value	Unit
Collector- Emitter Voltage	Tvj=25℃	V _{CES}	1200	V
Continuous DC collector current	Tc=100℃, Tvj max=175℃	I _{C nom}	300	A
Repetitive peak collector current	t _P =1ms	I _{CRM}	600	А
Gate emitter voltage		V_{GE}	±20	V

ELECTRICAL CHARATERISTICS

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Collector-Emitter saturation voltage VGE=15V, IC=300A Tvj=25℃ VGE=15V, IC=300A Tvj=125℃ VGE=15V, IC=300A Tvj=150℃	$V_{CE(SAT)}$		2.10 2.50 2.58	2.65	V
Gate-Emitter threshold voltage IC=8mA, VGE= VCE Tvj=25℃	$V_{GE(th)}$	5.5	6.1	6.7	V
Gate charge VGE = -15 V +15 V	Q_{G}		1.52		uC
Internal gate resistor (Tvj = 25°C)	R _{Gint}		3.48		Ω
Input capacitance f=1 MHz, VCE=25V, VGE=0V Tvj=25°C	C _{ies}		27.38		nF

M300R12E6HF

Reverse transfer capacitance f=1 MHz, VCE=25V, VGE=0V	Tvj=25 ℃	C _{res}		0.21		nF
Collector-emitter cut-off current VCE=1200V, VGE=0V Tvj=25°	С	I _{CES}			2	mA
Gate-emitter leakage current VCE=0V, VGE=20V Tvj=25°C		I _{GES}			200	nA
Turn-on delay time IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	td _(ON)		350 362 363		ns
Rise time IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	tr		87 99 96		ns
Turn-off delay time IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	td _(OFF)		227 272 281		ns
Fall time IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	tf		60 94 96		ns
Turn-on energy loss per pulse IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω di/dt = 2477A/μs (Tvj = 150°C) (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	E _(ON)		25.31 40.84 45.26		mJ
Turn-off energy loss per pulse IC=300A, VCE=600 V VGE=±15 V, RG=3.3Ω dv/dt = 8706V/μs (Tvj = 150°C) (inductive load)	Tvj=25℃ Tvj=125℃ Tvj=150℃	E _(OFF)		9.88 14.30 15.87		mJ
Temperature under switching con	ditions	Tvj op	-40		150	°C

Diode, Inverter

MAXIMUM RATINGS

Characteristic	Condition	Symbol	Value	Unit
Repetitive peak reverse voltage	Tvj=25 ℃	V _{RRM}	1200	V
Continuous DC forward current		I _F	300	А
Repetitive peak forward current	t _P =1ms	I _{FRM}	600	А
l²t -value	t _P =10ms, sin180 [°] , Tvj=125°C	l ² t	34000	A ² s

ELECTRICAL CHARATERISTICS

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Forward voltage IF=300A, VGE=0 V Tvj=25°C IF=300A, VGE=0 V Tvj=125°C IF=300A, VGE=0 V Tvj=150°C	V _F		2.08 1.74 1.66	2.55	v
Peak reverse recovery current IF=300 A, Tvj=25℃ -diF/dt =2477A/µs(Tvj=150°C) Tvj=125℃ VR=600 V ,VGE= -15 V Tvj=150℃	I _{RM}		122 224 243		A
Recovered charge IF=300 A, Tvj=25℃ -diF/dt =2477A/µs(Tvj=150°C) Tvj=125℃ VR=600 V ,VGE= -15 V Tvj=150℃	Qr		18.96 50.12 60.12		uC
Reverse recovered energy IF=300 A, Tvj=25℃ -diF/dt =2477A/µs(Tvj=150°C) Tvj=125℃ VR=600 V ,VGE= -15 V Tvj=150℃	E _{rec}		7.05 17.91 21.72		mJ
Temperature under switching conditions	Tvj op	-40		150	°C

Module

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Isolation test voltage RMS, f=50Hz, t=1min	V _{ISOL}	4000			V
Internal isolation			AL ₂ O ₃		

M300R12E6HF

Storage temperature	T _{STG}	-40		125	°C
Mounting torque for modul mounting	Μ	3.0		6.0	Nm
Terminal Connection Torque	М	2.5		5.0	Nm
Weight	W		313		g

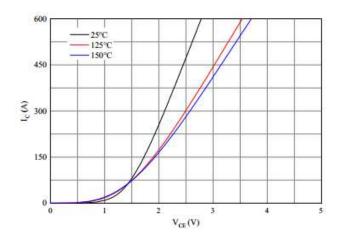


Figure 1. Typical output characteristics (VGE=15V)

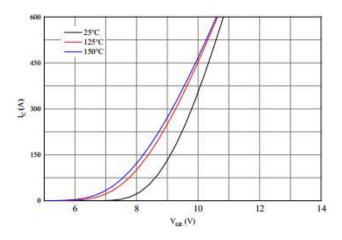


Figure 3. Typical transfer characteristic(VCE=20V)

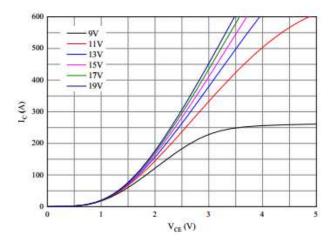
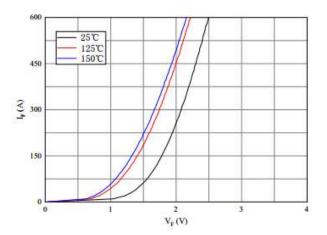
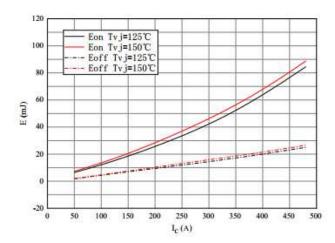
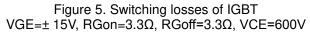
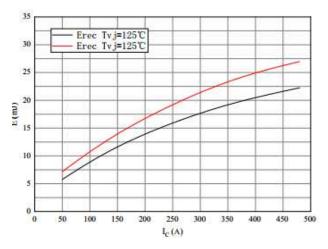
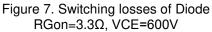


Figure 2. Typical output characteristics (Tvj=150°C)


Figure 4. Forward characteristic of Diode

M300R12E6HF

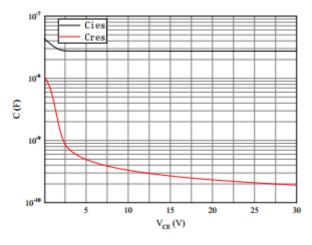


Figure 9. Capacitance characteristic

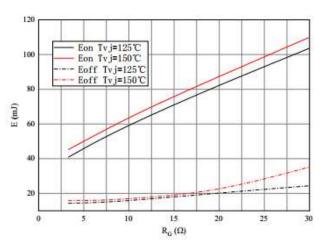
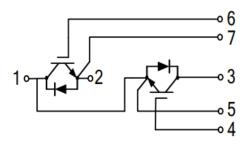



Figure 6. Switching losses of IGBT VGE=± 15V, IC=300A, VCE=600V

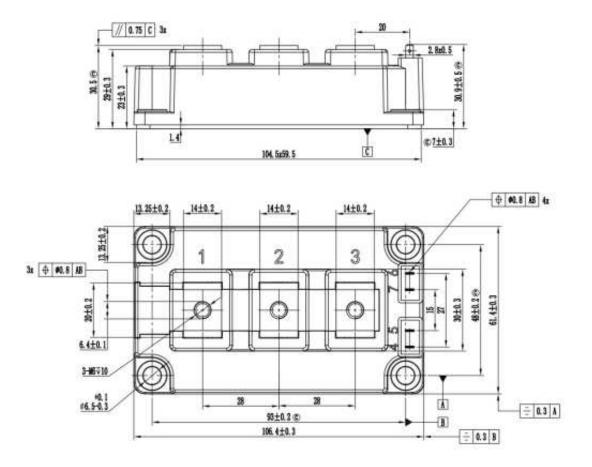


Figure 8. Switching losses of Diode IF=300A, VCE=600V

Circuit diagram

• Package outlines : Dimensions in (mm)

Remark: 1. © control key dimensions 2.Unmarked tolerances shall be implemented in accordance with GB/T1804-m

Notice

MOSPEC reserves the rights to make changes of the content herein the document anytime without notification. MOSPEC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Please refer to MOSPEC website for the last document.

MOSPEC disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially incurred.

Application shown on the herein document are examples of standard use and operation. Customers are responsible for comprehending suitable use in particular applications. MOSPEC makes no representation or warranty that such application will be suitable for the specified use without further testing or modification.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by MOSPEC for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of MOSPEC or others.

These MOSPEC products are intended for usage in general electronic equipment. Please make sure to consult with MOSPEC before you use these MOSPEC products in equipment which require specialized quality and/or reliability, and in equipment which could have major impact to the welfare of human life (atomic energy control, aeronautics , traffic control, combustion control, safety devices etc.)